BSI3D 3D Billet Surface Inspection system

How it works

- > The BSI^{3D} / Billet Surface Inspection system is usually placed above the existing conveyor, prior the ultrasonic inspection process;
- > Billet code identification is automatically performed;
- > A set of sensors collect high resolution tridimensional & photographic pictures;
- > The defects are automatically detected and quantified;
- Inspection status is automatically transmitted to the process control system;
- > Complete information about defects found is stored into the database.

 $\langle \langle$ Our BSI^{3D} improves the quality and objectivity of your billet surface inspection process while ensuring traceability, productivity and customer satisfaction

Key features

- > Operator free completely automated;
- > Threshold values regarding defect detections can be adjusted;
- > Automated detection of defects like:
 - Out of gas cushions;
 - Slip;
 - Zipper;
 - Bleed out;
 - Oxide patches;
 - Billet deflection;
- > Generates historical data allowing process optimization & quality follow-up / traceability;
- > Reads billet identification or/ add ID code (option);
- > Allows partial acceptance of the billet depending on the sub-lengths to cut;
- > Improves quality and objectivity of the inspection;
- > Integrates the state of the art 3D & 2D machine vision technologies;

Surface defect examples

Scratch

Billet deflection

Oxyde patches

Out of gas cushion

HMI results

Bleed out

HMI results

> Average resolution of 0.2 mm (regular configuration); > Cycle time fewer than 60 sec;

> Overall dimensions are customized to fit existing conveyer, the maximum billet length and billet diameters to scan.

Typical specifications

